If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.8t^2=48t
We move all terms to the left:
0.8t^2-(48t)=0
a = 0.8; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·0.8·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*0.8}=\frac{0}{1.6} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*0.8}=\frac{96}{1.6} =60 $
| 0.3(x+5)=30 | | 4(-4+2n)=-16+8n | | -8-7p=-8(1+8p) | | -16x+12x-15=33 | | -22-2x=5(6x+2) | | 7k+37=3(6k+5) | | xx8=55 | | -2(7+x)=22 | | 0=-3x^2+6x+24 | | 4(x+1.25)=29 | | 3(1+3x)-8=30+4x | | -7(1-8m)+5=-2-m | | 1/5(x-9)=25 | | 4x+12=2x-18- | | 100=-28x+-24 | | 100=28x+-24 | | x+11/45=72/3x-9 | | 100=-4(7x+7)+4 | | 1/8f=2 | | 3^(2x)=8 | | 3^(2x)+5=13 | | 2(1-4x)-9=5(6-3x) | | 2(3x-3)=1-18 | | 2-8x-9=30-15x | | 9^2+r^2=3+r | | 130=1/2(26•h) | | 11/6x=6 | | 3+x=9+x | | -24+6n=-5(n+2) | | 280=50t | | 2x(×+3)=2x^2+15 | | 41=18+x+17 |